
Documentation from CyberTest Page 1

Flawnter SAST Rules Overview

Static Application Security Testing (SAST) is a crucial process in modern software development, designed

to identify vulnerabilities and security flaws within the source code of applications before they are

deployed. Flawnter SAST rule sets are predefined sets of rules that Flawnter use to analyze and evaluate

source code and even some binaries for potential security issues. These rules play an important role in

the SAST process, as they define the criteria for identifying security vulnerabilities, logical errors, and

other weaknesses that may be exploited or cause the application to crash or behave abnormally.

These rule sets are crafted to address specific types of security threats, coding standards, and industry

best practices from OWASP, SANS/CWE, NIST, SEI CERT, PCI and others. Flawnter uses different type of

rule sets to achieve the best results. There are direct rules, generic rules and predictive rules that use AI

driven analysis. Additionally Flawnter has deep scan capabilities that help go beyond and potentially find

more bugs. Please visit our documentation page https://www.flawnter.com/documentation that will

show how organizations can use Flawnter configuration file to tailor these rule sets to their specific

needs and achieve a more robust and secure software development lifecycle.

The table provided below does not include quality rules. Instead, it focuses on the most commonly used

security test rules. It's important to note that this list is not exhaustive, and there are other security rules

that are not included in this table. Furthermore, each primary testing rule may encompass hundreds of

sub-test rules. When aggregated, the total number of rules surpasses several thousand.

Rule Description CWE ID

1 Hard Coded Credentials/Secrets These rules are to scan source and
configuration files for hard coded
passwords/tokens/keys/etc.

259, 798

2 Cryptography Issues Weak algorithms, weak keys, weak
hashes, weak randomness, etc.

327, 1346

3 Code Execution/Injection Any code execution or injection. 78, 94

4 SQL/XML/LDAP/DOM/LOG Injection Injecting untrusted input into SQL, XML,
XPATH, LDAP, DOM, LOG.

89, 90, 91

5 Path Traversal & File Manipulation Attacks Looks for path/directory traversal
attacks that come from untrusted input.

22

6 Cross-site Scripting Check for any cross-site scripting
attacks including DOM based.

79

7 Broken/Improper Authentication Check for possible authentication
bypass and weaknesses.

287

8 Information / Sensitive Data Exposure Information Disclosure, Sensitive Data
Exposure.

200

9 Denial of Service Check for possible Denial of Service
attacks.

400, 770

https://www.flawnter.com/documentation

Documentation from CyberTest Page 2

10 Insecure/Improper Authorization Insecure/Improper access controls. 284, 285

11 Clickjacking Check for clickjacking attacks. 1021

12 Response Splitting / Header Injections Check for untrusted input being sent to
functions that may cause response
splitting and header injections.

113

13 Buffer Over-read/Over-run/overflow 120, 121,
122

14 Memory Leaks Check that may lead to memory leaks
like forgetting to close objects or
freeing memory.

401

15

Security Misconfiguration Check for incorrect configurations. 16

16 Insecure Communication Check for cleartext transmission of
data. Missing encryption.

319

17 Trust Boundary Violation Check for trusting unvalidated data. 501

18 Deadlocks Check for possible deadlocks. 833

19 Insecure Deserialization Check for possible Insecure
Deserialization.

502

20 Xml External Entity Check for Xml External Entity attacks. 611

21 Incorrect Function Usage Check for some functions incorrect
usage.

684

22 Race Condition Check for some race conditions. 366

23 Missing Http Only Cookie Attribute Check for missing HttpOnly flag for
sensitive cookies.

1004

24 Missing Secure Cookie Attribute Check for missing Secure flag for
sensitive cookies.

614

25 Parameter Pollution Improper handling of parameters. 235

26 Debug Enabled Check to see if debug is turned on. 489

27 Null Pointer Dereference Check for null pointer dereferences. 476

28 Cross-site Request Forgery Check for Cross-Site Request Forgery
(CSRF) attacks.

352

29 Server Side Request Forgery Checks for Server Side Request Forgery
(SSRF) attacks.

918

30 Resource Injection Check for resource injections. 99

